国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (3): 180-185.doi: 10.3760/cma.j.cn371439-20250110-00028
收稿日期:
2025-01-10
修回日期:
2025-02-17
出版日期:
2025-03-08
发布日期:
2025-04-02
通讯作者:
盛立军,Email:shenglijun328@126.com
Received:
2025-01-10
Revised:
2025-02-17
Online:
2025-03-08
Published:
2025-04-02
Contact:
Sheng Lijun,Email:摘要:
免疫治疗已在非小细胞肺癌(NSCLC)中取得了较为理想的效果,但并非所有患者都能从中获益。基于外周血的标志物易获取、可动态监测,外周血肿瘤细胞相关标志物(循环肿瘤DNA、循环肿瘤细胞、外周血肿瘤突变负荷、外泌体等)、免疫及炎症标志物(T淋巴细胞亚群、血常规相关比值、C反应蛋白等)在免疫治疗疗效预测、预后评估和动态监测方面显示出巨大潜力。
王智颖, 盛立军. 外周血标志物在非小细胞肺癌免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 180-185.
Wang Zhiying, Sheng Lijun. Research progress of peripheral blood biomarkers in immunotherapy of non-small cell lung cancer[J]. Journal of International Oncology, 2025, 52(3): 180-185.
[1] |
Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends[J]. Nat Rev Clin Oncol, 2023, 20(9): 624-639. DOI: 10.1038/s41571-023-00798-3.
pmid: 37479810 |
[2] | Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006. |
[3] | Tang S, Qin C, Hu H, et al. Immune checkpoint inhibitors in non-small cell lung cancer: progress, challenges, and prospects[J]. Cells, 2022, 11(3): 320. DOI: 10.3390/cells11030320. |
[4] | Ricciuti B, Jones G, Severgnini M, et al. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC)[J]. J Immunother Cancer, 2021, 9(3): e001504. DOI: 10.1136/jitc-2020-001504. |
[5] |
Pellini B, Chaudhuri AA. Circulating tumor DNA minimal residual disease detection of non-small-cell lung cancer treated with curative intent[J]. J Clin Oncol, 2022, 40(6): 567-575. DOI: 10.1200/JCO.21.01929.
pmid: 34985936 |
[6] | Liu SY, Dong S, Yang XN, et al. Neoadjuvant nivolumab with or without platinum-doublet chemotherapy based on PD-L1 expression in resectable NSCLC (CTONG1804): a multicenter open-label phase Ⅱ study[J]. Signal Transduct Target Ther, 2023, 8(1): 442. DOI: 10.1038/s41392-023-01700-4. |
[7] | Moding EJ, Liu YF, Nabet BY, et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer[J]. Nat Cancer, 2020, 1(2): 176-183. DOI: 10.1038/s43018-019-0011-0. |
[8] | Wang Y, Wang W, Zhang T, et al. Dynamic bTMB combined with residual ctDNA improves survival prediction in locally advanced NSCLC patients with chemoradiotherapy and consolidation immunotherapy[J]. J Natl Cancer Cent, 2024, 4(2): 177-187. DOI: 10.1016/j.jncc.2024.01.008. |
[9] |
Provencio M, Serna-Blasco R, Nadal E, et al. Overall survival and biomarker analysis of neoadjuvant nivolumab plus chemotherapy in operable stage ⅢA non-small-cell lung cancer (NADIM phase Ⅱ trial)[J]. J Clin Oncol, 2022, 40(25): 2924-2933. DOI: 10.1200/JCO.21.02660.
pmid: 35576508 |
[10] | Murray JC, Sivapalan L, Hummelink K, et al. Elucidating the heterogeneity of immunotherapy response and immune-related toxicities by longitudinal ctDNA and immune cell compartment tracking in lung cancer[J]. Clin Cancer Res, 2024, 30(2): 389-403. DOI: 10.1158/1078-0432.CCR-23-1469. |
[11] | Jin F, Zhu L, Shao J, et al. Circulating tumour cells in patients with lung cancer universally indicate poor prognosis[J]. Eur Respir Rev, 2022, 31(166): 220151. DOI: 10.1183/16000617.0151-2022. |
[12] | Wankhede D, Grover S, Hofman P. Circulating tumor cells as a predictive biomarker in resectable lung cancer: a systematic review and meta-analysis[J]. Cancers (Basel), 2022, 14(24): 6112. DOI: 10.3390/cancers14246112. |
[13] |
Mondelo-Macía P, García-González J, León-Mateos L, et al. Clinical potential of circulating free DNA and circulating tumour cells in patients with metastatic non-small-cell lung cancer treated with pembrolizumab[J]. Mol Oncol, 2021, 15(11): 2923-2940. DOI: 10.1002/1878-0261.13094.
pmid: 34465006 |
[14] | Purcell E, Niu Z, Owen S, et al. Circulating tumor cells reveal early predictors of disease progression in patients with stage Ⅲ NSCLC undergoing chemoradiation and immunotherapy[J]. Cell Rep, 2024, 43(2): 113687. DOI: 10.1016/j.celrep.2024.113687. |
[15] | Spiliotaki M, Neophytou CM, Vogazianos P, et al. Dynamic monito-ring of PD-L1 and Ki67 in circulating tumor cells of metastatic non-small cell lung cancer patients treated with pembrolizumab[J]. Mol Oncol, 2023, 17(5): 792-809. DOI: 10.1002/1878-0261.13317. |
[16] | Papadaki MA, Sotiriou AI, Vasilopoulou C, et al. Optimization of the enrichment of circulating tumor cells for downstream phenotypic analysis in patients with non-small cell lung cancer treated with anti-PD-1 immunotherapy[J]. Cancers (Basel), 2020, 12(6): 1556. DOI: 10.3390/cancers12061556. |
[17] | Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. DOI: 10.1038/s41392-021-00817-8. |
[18] |
Gandara DR, Paul SM, Kowanetz M, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab[J]. Nat Med, 2018, 24(9): 1441-1448. DOI: 10.1038/s41591-018-0134-3.
pmid: 30082870 |
[19] | Kim ES, Velcheti V, Mekhail T, et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial[J]. Nat Med, 2022, 28(5): 939-945. DOI: 10.1038/s41591-022-01754-x. |
[20] |
Si H, Kuziora M, Quinn KJ, et al. A blood-based assay for assessment of tumor mutational burden in first-line metastatic NSCLC treatment: results from the MYSTIC study[J]. Clin Cancer Res, 2021, 27(6): 1631-1640. DOI: 10.1158/1078-0432.CCR-20-3771.
pmid: 33355200 |
[21] |
Jiang T, Chen J, Xu X, et al. On-treatment blood TMB as predictors for camrelizumab plus chemotherapy in advanced lung squamous cell carcinoma: biomarker analysis of a phase Ⅲ trial[J]. Mol Cancer, 2022, 21(1): 4. DOI: 10.1186/s12943-021-01479-4.
pmid: 34980131 |
[22] |
Wang Z, Duan J, Wang G, et al. Allele frequency-adjusted blood-based tumor mutational burden as a predictor of overall survival for patients with NSCLC treated with PD-(L)1 inhibitors[J]. J Thorac Oncol, 2020, 15(4): 556-567. DOI: 10.1016/j.jtho.2019.12.001.
pmid: 31843683 |
[23] | Ai X, Jia B, He Z, et al. Noninvasive early identification of durable clinical benefit from immune checkpoint inhibition: a prospective multicenter study (NCT04566432)[J]. Signal Transduct Target Ther, 2024, 9(1): 350. DOI: 10.1038/s41392-024-02060-3. |
[24] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. DOI: 10.1126/science.aau6977. |
[25] | Yang Q, Chen M, Gu J, et al. Novel biomarkers of dynamic blood PD-L1 expression for immune checkpoint inhibitors in advanced non-small-cell lung cancer patients[J]. Front Immunol, 2021, 12: 665133. DOI: 10.3389/fimmu.2021.665133. |
[26] |
Wang Y, Niu X, Cheng Y, et al. Exosomal PD-L1 predicts response with immunotherapy in NSCLC patients[J]. Clin Exp Immunol, 2022, 208(3): 316-322. DOI: 10.1093/cei/uxac045.
pmid: 35514075 |
[27] | Akbar S, Raza A, Mohsin R, et al. Circulating exosomal immuno-oncological checkpoints and cytokines are potential biomarkers to monitor tumor response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer patients[J]. Front Immunol, 2023, 13: 1097117. DOI: 10.3389/fimmu.2022.1097117. |
[28] | Peng XX, Yu R, Wu X, et al. Correlation of plasma exosomal microRNAs with the efficacy of immunotherapy in EGFR/ALK wild-type advanced non-small cell lung cancer[J]. J Immunother Cancer, 2020, 8(1): e000376. DOI: 10.1136/jitc-2019-000376. |
[29] |
Steier Z, Kim EJY, Aylard DA, et al. The CD4 versus CD8 T cell fate decision: a multiomics-informed perspective[J]. Annu Rev Immunol, 2024, 42(1): 235-258. DOI: 10.1146/annurev-immunol-083122-040929.
pmid: 38271641 |
[30] | Kagamu H, Kitano S, Yamaguchi O, et al. CD4+ T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy[J]. Cancer Immunol Res, 2020, 8(3): 334-344. DOI: 10.1158/2326-6066.CIR-19-0574. |
[31] | Wu SG, Ho CC, Yang JC, et al. Atezolizumab, bevacizumab, pemetrexed and platinum for EGFR-mutant NSCLC patients after EGFR TKI failure: a phase Ⅱ study with immune cell profile analysis[J]. Clin Transl Med, 2025, 15(1): e70149. DOI: 10.1002/ctm2.70149. |
[32] | Kim CG, Hong MH, Kim KH, et al. Dynamic changes in circulating PD-1+CD8+ T lymphocytes for predicting treatment response to PD-1 blockade in patients with non-small-cell lung cancer[J]. Eur J Cancer, 2021, 143: 113-126. DOI: 10.1016/j.ejca.2020.10.028. |
[33] | Guo W, Qiao T, Li H, et al. Peripheral CD8+PD-1+ T cells as novel biomarker for neoadjuvant chemoimmunotherapy in humanized mice of non-small cell lung cancer[J]. Cancer Lett, 2024, 597: 217073. DOI: 10.1016/j.canlet.2024.217073. |
[34] | Han J, Duan J, Bai H, et al. TCR repertoire diversity of peripheral PD-1+CD8+ T cells predicts clinical outcomes after immunotherapy in patients with non-small cell lung cancer[J]. Cancer Immunol Res, 2020, 8(1): 146-154. DOI: 10.1158/2326-6066.CIR-19-0398. |
[35] | Altan M, Li R, Li Z, et al. High peripheral T cell diversity is associated with lower risk of toxicity and superior response to dual immune checkpoint inhibitor therapy in patients with metastatic NSCLC[J]. J Immunother Cancer, 2024, 12(12): e008950. DOI: 10.1136/jitc-2024-008950. |
[36] | Huang SW, Jiang W, Xu S, et al. Systemic longitudinal immune profiling identifies proliferating Treg cells as predictors of immunotherapy benefit: biomarker analysis from the phase 3 CONTINUUM and DIPPER trials[J]. Signal Transduct Target Ther, 2024, 9(1): 285. DOI: 10.1038/s41392-024-01988-w. |
[37] | Banna GL, Cortellini A, Cortinovis DL, et al. The lung immuno-oncology prognostic score (LIPS-3): a prognostic classification of patients receiving first-line pembrolizumab for PD-L1≥50% advanced non-small-cell lung cancer[J]. ESMO Open, 2021, 6(2): 100078. DOI: 10.1016/j.esmoop.2021.100078. |
[38] | Nguyen CTT, Van TNK, Huong PT. Predictability of neutrophile to lymphocyte ratio and platelet to lymphocyte ratio on the effectiveness of immune checkpoint inhibitors in non-small cell lung cancer patients: a meta-analysis[J]. Cancer Control, 2024, 31: 10732748241285474. DOI: 10.1177/10732748241285474. |
[39] |
Sugimoto A, Kaneda H, Yoshimoto N, et al. Derived neutrophil-to-lymphocyte ratio has the potential to predict safety and outcomes of durvalumab after chemoradiation in non-small cell lung cancer[J]. Sci Rep, 2024, 14(1): 19596. DOI: 10.1038/s41598-024-70214-y.
pmid: 39179598 |
[40] | Ksienski D, Wai ES, Alex D, et al. Prognostic significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for advanced non-small cell lung cancer patients with high PD-L1 tumor expression receiving pembrolizumab[J]. Transl Lung Cancer Res, 2021, 10(1): 355-367. DOI: 10.21037/tlcr-20-541. |
[41] |
Takada K, Takamori S, Yoneshima Y, et al. Serum markers associated with treatment response and survival in non-small cell lung cancer patients treated with anti-PD-1 therapy[J]. Lung Cancer, 2020, 145: 18-26. DOI: 10.1016/j.lungcan.2020.04.034.
pmid: 32388276 |
[42] | Ye X, Dai M, Xiang Z. Prognostic role of systemic inflammation response index in patients with non-small cell lung cancer: a meta-analysis[J]. BMJ Open, 2024, 14(11): e087841. DOI: 10.1136/bmjopen-2024-087841. |
[43] | Veccia A, Dipasquale M, Kinspergher S, et al. Prognostic role of inflammatory and nutritional biomarkers in non-small-cell lung cancer patients treated with immune checkpoint inhibitors alone or in combination with chemotherapy as first-line[J]. Cancers (Basel), 2024, 16(22): 3871. DOI: 10.3390/cancers16223871. |
[44] |
Tong W, Xu H, Tang J, et al. Inflammatory factors are associated with prognosis of non-small cell lung cancer patients receiving immunotherapy: a meta-analysis[J]. Sci Rep, 2024, 14(1): 26102. DOI: 10.1038/s41598-024-76052-2.
pmid: 39478006 |
[45] |
Zheng X, Zhang L, Wu L, et al. Baseline C-reactive protein predicts efficacy of the first-line immune checkpoint inhibitors plus chemotherapy in advanced lung squamous cell carcinoma: a retrospective, multicenter study[J]. BMC Cancer, 2023, 23(1): 1244. DOI: 10.1186/s12885-023-11737-x.
pmid: 38104105 |
[46] | Klümper N, Saal J, Berner F, et al. C reactive protein flare predicts response to checkpoint inhibitor treatment in non-small cell lung cancer[J]. J Immunother Cancer, 2022, 10(3): e004024. DOI: 10.1136/jitc-2021-004024. |
[47] | Naqash AR, McCallen JD, Mi E, et al. Increased interleukin-6/C-reactive protein levels are associated with the upregulation of the adenosine pathway and serve as potential markers of therapeutic resistance to immune checkpoint inhibitor-based therapies in non-small cell lung cancer[J]. J Immunother Cancer, 2023, 11(10): e007310. DOI: 10.1136/jitc-2023-007310. |
[1] | 杨胜军, 任江, 杨丹, 龙宇, 商群献. 非小细胞肺癌组织中miR-4262、NRG1的表达水平及临床意义[J]. 国际肿瘤学杂志, 2025, 52(3): 129-135. |
[2] | 韩双. 外周实性结节Ⅰ期肺腺癌脏层胸膜侵犯的CT特征分析及预测价值[J]. 国际肿瘤学杂志, 2025, 52(3): 136-143. |
[3] | 来瑞鹤, 滕月, 戎剑, 盛丹丹, 耿羽智, 陈建新, 蒋冲, 丁重阳, 周正扬. 基于18F-FDG PET/CT原发灶影像组学的联合模型预测NSCLC淋巴结转移的价值[J]. 国际肿瘤学杂志, 2025, 52(3): 144-151. |
[4] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛. 结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
[5] | 韩涛, 贾沛沛, 鲁静. iRhom1、iRhom2、TNF-α水平对宫颈癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2025, 52(3): 158-162. |
[6] | 李志远, 贾秀红. 铜死亡在肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 163-168. |
[7] | 欧阳苏瑞, 孙梦颖, 唐桩, 李进, 何敬东. 瘤内免疫注射药物及药物递送载体的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 169-175. |
[8] | 张百红, 岳红云. 抗肿瘤药物递送系统研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 176-179. |
[9] | 王菲菲, 赵守香, 李颖, 王涛, 郭琴, 田胜南, 蔡晓珊. 气球状细胞黑色素瘤肝转移1例[J]. 国际肿瘤学杂志, 2025, 52(3): 190-192. |
[10] | 邢辉, 谭莹, 王秀珍, 李瑞, 刘霞. NLR、TNF-α水平对巨块型肝癌患者TACE联合微波消融治疗效果的预测分析[J]. 国际肿瘤学杂志, 2025, 52(2): 101-106. |
[11] | 王熙博, 田宝文, 陈士巧. Breg细胞在肿瘤免疫逃逸中的机制及相关治疗靶点[J]. 国际肿瘤学杂志, 2025, 52(2): 107-112. |
[12] | 叶永英, 邹艳, 陈天明, 吴伟莉. 时钟基因Period家族在头颈鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(2): 113-118. |
[13] | 陈丹蕾, 邓隽军, 李淼. 循环肿瘤细胞在肺癌中的临床应用进展[J]. 国际肿瘤学杂志, 2025, 52(2): 119-123. |
[14] | 陈茹雁, 付振明. 晚期肾细胞癌的免疫治疗现状与进展[J]. 国际肿瘤学杂志, 2025, 52(2): 124-128. |
[15] | . 胃癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(2): 65-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||