国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (3): 186-189.doi: 10.3760/cma.j.cn371439-20241224-00029
收稿日期:
2024-12-24
修回日期:
2025-01-29
出版日期:
2025-03-08
发布日期:
2025-04-02
通讯作者:
王秋兰,Email:qiulwang@163.com
基金资助:
Pu Wenxia1, Deng Zongzhuo1, Wang Peixin2, Wang Qiulan1()
Received:
2024-12-24
Revised:
2025-01-29
Online:
2025-03-08
Published:
2025-04-02
Contact:
Wang Qiulan,Email:Supported by:
摘要:
骨肉瘤是一类间质组织肿瘤,具有高侵袭性和转移性。促血管生成因子、血管内皮细胞在骨肉瘤血管生成和转移中起关键作用,血管内皮细胞与骨肉瘤细胞的相互作用可影响骨肉瘤的生长及转移,骨肉瘤抗血管治疗药物包括单克隆抗体、酪氨酸激酶抑制剂、中药等均可抑制骨肉瘤的进展。深入研究血管生成与骨肉瘤的相关性,可为骨肉瘤血管化研究及骨肉瘤抗血管治疗提供新的思路。
蒲文霞, 邓宗卓, 王培鑫, 王秋兰. 血管生成与骨肉瘤的相关性研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 186-189.
Pu Wenxia, Deng Zongzhuo, Wang Peixin, Wang Qiulan. Research progress of the correlation between angiogenesis and osteosarcoma[J]. Journal of International Oncology, 2025, 52(3): 186-189.
[1] |
Beird HC, Bielack SS, Flanagan AM, et al. Osteosarcoma[J]. Nat Rev Dis Primers, 2022, 8(1): 77. DOI: 10.1038/s41572-022-00409-y.
pmid: 36481668 |
[2] |
Xu N, Kang Y, Wang W, et al. The prognostic role of CD133 expression in patients with osteosarcoma[J]. Clin Exp Med, 2020, 20(2): 261-267. DOI: 10.1007/s10238-020-00607-6.
pmid: 32048073 |
[3] | 王培鑫, 赵军, 徐世红, 等. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. DOI: 10.3760/cma.j.cn371439-20240304-00052. |
[4] | Odri GA, Tchicaya-Bouanga J, Yoon DJY, et al. Metastatic progression of osteosarcomas: a review of current knowledge of environmental versus oncogenic drivers[J]. Cancers (Basel), 2022, 14(2): 360. DOI: 10.3390/cancers14020360. |
[5] |
Sadykova LR, Ntekim AI, Muyangwa-Semenova M, et al. Epidemiology and risk factors of osteosarcoma[J]. Cancer Invest, 2020, 38(5): 259-269. DOI: 10.1080/07357907.2020.1768401.
pmid: 32400205 |
[6] |
Al-Abboodi M, An R, Weber M, et al. Tumor-type-dependent effects on the angiogenic abilities of endothelial cells in an in vitro rat cell model[J]. Oncol Rep, 2019, 42(1): 350-360. DOI: 10.3892/or.2019.7143.
pmid: 31059104 |
[7] | Puxeddu I, Pratesi F, Ribatti D, et al. Mediators of inflammation and angiogenesis in chronic spontaneous urticaria: are they potential biomarkers of the disease?[J]. Mediators Inflamm, 2017, 2017: 4123694. DOI: 10.1155/2017/4123694. |
[8] | Ma J, Huang H, Han Z, et al. RLN2 is a positive regulator of AKT-2-induced gene expression required for osteosarcoma cells invasion and chemoresistance[J]. Biomed Res Int, 2015, 2015: 147468. DOI: 10.1155/2015/147468. |
[9] | Fernandez-Cortes M, Delgado-Bellido D, Oliver FJ. Vasculogenic mimicry: become an endothelial cell "but not so much"[J]. Front Oncol, 2019, 9: 803. DOI: 10.3389/fonc.2019.00803. |
[10] | Ren HY, Shen JX, Mao XM, et al. Correlation between tumor vasculogenic mimicry and poor prognosis of human digestive cancer patients: a systematic review and meta-analysis[J]. Pathol Oncol Res, 2019, 25(3): 849-858. DOI: 10.1007/s12253-018-0496-3. |
[11] |
Yao N, Ren K, Gu XJ, et al. Identification of potential crucial genes associated with vasculogenic mimicry in human osteosarcoma based on gene expression profile[J]. Neoplasma, 2020, 67(2): 286-295. DOI: 10.4149/neo_2019_190414N329.
pmid: 31884799 |
[12] | 任可, 姚楠, 吴苏稼, 等. 基于血管生成拟态相关分子MIG-7的四肢骨肉瘤预后分析及风险预测模型构建[J]. 肿瘤防治研究, 2021, 48(1): 31-37. DOI: 10.3971/j.issn.1000-8578.2021.20.0521. |
[13] |
Ren K, Zhang J, Gu X, et al. Migration-inducing gene-7 independently predicts poor prognosis of human osteosarcoma and is associated with vasculogenic mimicry[J]. Exp Cell Res, 2018, 369(1): 80-89. DOI: 10.1016/j.yexcr.2018.05.008.
pmid: 29750896 |
[14] | Yao N, Zhou J, Song J, et al. miR-520d-3p/MIG-7 axis regulates vasculogenic mimicry formation and metastasis in osteosarcoma[J]. Neoplasma, 2022, 69(4): 764-775. DOI: 10.4149/neo_2022_211128N1683. |
[15] | Gao Z, Zhao GS, Lv Y, et al. Anoikis-resistant human osteosarcoma cells display significant angiogenesis by activating the Src kinase- mediated MAPK pathway[J]. Oncol Rep, 2019, 41(1): 235-245. DOI: 10.3892/or.2018.6827. |
[16] |
Zeng C, Wen M, Liu X. Fibroblast activation protein in osteosarcoma cells promotes angiogenesis via AKT and ERK signaling pathways[J]. Oncol Lett, 2018, 15(4): 6029-6035. DOI: 10.3892/ol.2018.8027.
pmid: 29552230 |
[17] |
Yang M, Zhang H, Gao S, et al. DEPDC1 and KIF4A synergistically inhibit the malignant biological behavior of osteosarcoma cells through hippo signaling pathway[J]. J Orthop Surg Res, 2023, 18(1): 145. DOI: 10.1186/s13018-023-03572-4.
pmid: 36849972 |
[18] |
Raimondi L, De Luca A, Gallo A, et al. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs[J]. Carcinogenesis, 2020, 41(5): 666-677. DOI: 10.1093/carcin/bgz130.
pmid: 31294446 |
[19] |
Lv J, Yuan J, Xu CJ, et al. VEGF-C/VEGFR-3/iNOS signaling in osteosarcoma MG63 cells mediates stimulatory effects on human umbilical vein endothelial cell proliferation[J]. Chin Med Sci J, 2021, 36(1): 35-42. DOI: 10.24920/003753.
pmid: 33853707 |
[20] |
Zhang P, Zhang J, Quan H, et al. MicroRNA-143 expression inhibits the growth and the invasion of osteosarcoma[J]. J Orthop Surg Res, 2022, 17(1): 236. DOI: 10.1186/s13018-022-03127-z.
pmid: 35418302 |
[21] |
Zhang L, Lv Z, Xu J, et al. MicroRNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR1 pathway[J]. FEBS J, 2018, 285(7): 1359-1371. DOI: 10.1111/febs.14416.
pmid: 29474747 |
[22] |
Xie L, Li W, Li Y. Mir-744-5p inhibits cell growth and angiogenesis in osteosarcoma by targeting NFIX[J]. J Orthop Surg Res, 2024, 19(1): 485. DOI: 10.1186/s13018-024-04947-x.
pmid: 39152460 |
[23] |
Kumanishi S, Yamanegi K, Nishiura H, et al. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells[J]. Int J Oncol, 2019, 55(1): 167-178. DOI: 10.3892/ijo.2019.4811.
pmid: 31180533 |
[24] |
Li W, Liu J, Cai T, et al. TCF12 transcriptionally activates SPHK1 to induce osteosarcoma angiogenesis by promoting the S1P/S1PR4/STAT3 axis[J]. Mol Cell Biol, 2024, 44(5): 178-193. DOI: 10.1080/10985549.2024.2341781.
pmid: 38767243 |
[25] |
Ling J, Sun Y, Pan J, et al. Feedback modulation of endothelial cells promotes epithelial-mesenchymal transition and metastasis of osteosarcoma cells by von willebrand factor release[J]. J Cell Biochem, 2019, 120(9): 15971-15979. DOI: 10.1002/jcb.28875.
pmid: 31099074 |
[26] |
Yang J, Hu Y, Wang L, et al. Human umbilical vein endothelial cells derived-exosomes promote osteosarcoma cell stemness by activating notch signaling pathway[J]. Bioengineered, 2021, 12(2): 11007-11017. DOI: 10.1080/21655979.2021.2005220.
pmid: 34781817 |
[27] | Ghalehbandi S, Yuzugulen J, Pranjol MZI, et al. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF[J]. Eur J Pharmacol, 2023, 949: 175586. DOI: 10.1016/j.ejphar.2023.175586. |
[28] |
Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges[J]. Nat Rev Clin Oncol, 2020, 17(4): 251-266. DOI: 10.1038/s41571-019-0308-z.
pmid: 32034288 |
[29] | Hayashi T, Yamamoto N, Kurosawa G, et al. A novel high-throughput screening method for a human multicentric osteosarcoma-specific antibody and biomarker using a phage display-derived monoclonal antibody[J]. Cancers (Basel), 2022, 14(23): 5829. DOI: 10.3390/cancers14235829. |
[30] | Zhao ZX, Li X, Liu WD, et al. Inhibition of growth and metastasis of tumor in nude mice after intraperitoneal injection of bevacizumab[J]. Orthop Surg, 2016, 8(2): 234-240. DOI: 10.1111/os.12236. |
[31] | Kuo C, Kent PM, Logan AD, et al. Docetaxel, bevacizumab, and gemcitabine for very high risk sarcomas in adolescents and young adults: a single-center experience[J]. Pediatr Blood Cancer, 2017, 64(4): 28221727. DOI: 10.1002/pbc.26265. |
[32] | Assi A, Farhat M, Hachem MCR, et al. Tyrosine kinase inhibitors in osteosarcoma: adapting treatment strategiesa[J]. J Bone Oncol, 2023, 43: 100511. DOI: 10.1016/j.jbo.2023.100511. |
[33] | Wang BD, Yu XJ, Hou JC, et al. Bevacizumab attenuates osteosarcoma angiogenesis by suppressing MIAT encapsulated by serum-derived extracellular vesicles and facilitating miR-613-mediated GPR158 inhibition[J]. Cell Death Dis, 2022, 13(3): 272. DOI: 10.1038/s41419-022-04620-3. |
[34] | Buttell A, Qiu W. The action and resistance mechanisms of lenvatinib in liver cancer[J]. Mol Carcinog, 2023, 62(12): 1918-1934. DOI: 10.1002/mc.23625. |
[35] |
Guo J, Zhao J, Xu Q, et al. Resistance of lenvatinib in hepatocellular carcinoma[J]. Curr Cancer Drug Targets, 2022, 22(11): 865-878. DOI: 10.2174/1568009622666220428111327.
pmid: 36267045 |
[36] | Casanova M, Bautista F, Campbell-Hewson Q, et al. Regorafenib plus vincristine and irinotecan in pediatric patients with recurrent/refractory solid tumors: an innovative therapy for children with cancer study[J]. Clin Cancer Res, 2023, 29(21): 4341-4351. DOI: 10.1158/1078-0432.CCR-23-0257. |
[37] | Liu Y, Jiang B, Li Y, et al. Effect of traditional Chinese medicine in osteosarcoma: cross-interference of signaling pathways and potential therapeutic targets[J]. Medicine (Baltimore), 2024, 103(3): e36467. DOI: 10.1097/MD.0000000000036467. |
[38] | Li X, Lu Q, Xie W, et al. Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-catenin signaling[J]. Biochem Biophys Res Commun, 2018, 496(2): 443-449. DOI: 10.1016/j.bbrc.2018.01.052. |
[39] |
Rabelo AC, Borghesi J, Carreira ACO, et al. Calotropis procera (aiton) dryand (Apocynaceae) as an anti-cancer agent against canine mammary tumor and osteosarcoma cells[J]. Res Vet Sci, 2021, 138: 79-89. DOI: 10.1016/j.rvsc.2021.06.005.
pmid: 34119813 |
[40] |
Yao N, Zhou J, Jiang Y, et al. Rhizoma paridis saponins suppresses vasculogenic mimicry formation and metastasis in osteosarcoma through regulating miR-520d-3p/MIG-7 axis[J]. J Pharmacol Sci, 2022, 150(3): 180-190. DOI: 10.1016/j.jphs.2022.08.005.
pmid: 36184123 |
[41] | Zhou J, Wang L, Peng C, et al. Co-targeting tumor angiogenesis and immunosuppressive tumor microenvironment: a perspective in ethnopharmacology[J]. Front Pharmacol, 2022, 13: 886198. DOI: 10.3389/fphar.2022.886198. |
[42] |
Xiao Y, Yu TJ, Xu Y, et al. Emerging therapies in cancer metabolism[J]. Cell Metab, 2023, 35(8): 1283-1303. DOI: 10.1016/j.cmet.2023.07.006.
pmid: 37557070 |
[43] | Zhu D, Li Y, Zhang Z, et al. Recent advances of nanotechnology-based tumor vessel-targeting strategies[J]. J Nanobiotechnology, 2021, 19(1): 435. DOI: 10.1186/s12951-021-01190-y. |
[1] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[2] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[3] | 姜溪, 武永存, 梁艳, 楚丽, 段颖欣, 王力军, 霍俊杰. 派安普利单抗联合化疗对晚期非小细胞肺癌患者血管生成及循环内皮细胞的影响[J]. 国际肿瘤学杂志, 2024, 51(2): 89-94. |
[4] | 马小平, 常君丽, 孙星媛, 杨燕萍. 长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54. |
[5] | 周仁邦, 张仲传, 许志远, 朱勋兵. miR-219a-5p通过负调控HMGA2抑制骨肉瘤U2OS细胞增殖、侵袭和迁移[J]. 国际肿瘤学杂志, 2022, 49(4): 193-198. |
[6] | 李炳亮, 杨娅, 黄英丽, 司文, 李兴伟, 张元民, 卞继超, 陈语. miR-20a-5p靶向KDM6B对骨肉瘤细胞增殖、迁移和侵袭能力的影响[J]. 国际肿瘤学杂志, 2021, 48(2): 65-73. |
[7] | 杨晓1,李思2,彭锦3,王琳4,吴衣论4,冯颖2. 质膜型唾液酸酶NEU3活性对骨肉瘤MG-63细胞增殖与凋亡的影响[J]. 国际肿瘤学杂志, 2019, 46(4): 193-198. |
[8] | 黄海,毕锋. 阿帕替尼在恶性肿瘤治疗中的临床应用[J]. 国际肿瘤学杂志, 2019, 46(1): 45-48. |
[9] | 贺启华. 微小RNA-24对骨肉瘤细胞U2OS体外增殖与迁移能力的影响及作用机制[J]. 国际肿瘤学杂志, 2017, 44(7): 490-495. |
[10] | 袁源, 李松霖, 王忠华, 沈会华, 李悟, 王卫东. 吴茱萸碱抑制Wnt/β-catenin信号通路诱导骨肉瘤MG-63细胞凋亡[J]. 国际肿瘤学杂志, 2017, 44(2): 86-90. |
[11] | 王伟,李召辉,郑晓霞,崔玉英. ErbB3在骨肉瘤细胞株Saos-2中的表达及其意义[J]. 国际肿瘤学杂志, 2016, 43(8): 593-596. |
[12] | 吴进, 陈志达, 曾文容, 林斌, 吴欣宇, 刘庆军. HERG基因调控NF-κB通道抑制骨肉瘤恶性表型的研究[J]. 国际肿瘤学杂志, 2016, 43(7): 508-514. |
[13] | 沈国琪,张春林. 受体酪氨酸激酶在骨肉瘤和尤文肉瘤中的作用[J]. 国际肿瘤学杂志, 2015, 42(7): 551-553. |
[14] | 张宁, 尤建宇, 国维纳, 赵宝林. 骨肉瘤基因治疗的现状分析[J]. 国际肿瘤学杂志, 2015, 42(1): 74-76. |
[15] | 任慧文,杨澄,苏宏伟,李宏伟. 微小RNA表达比在骨肉瘤中的预测作用[J]. 国际肿瘤学杂志, 2014, 41(8): 708-711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||