国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (3): 163-168.doi: 10.3760/cma.j.cn371439-20240727-00025
收稿日期:
2024-07-27
修回日期:
2024-09-02
出版日期:
2025-03-08
发布日期:
2025-04-02
通讯作者:
贾秀红,Email:jiaxiuhong001@163.com
基金资助:
Received:
2024-07-27
Revised:
2024-09-02
Online:
2025-03-08
Published:
2025-04-02
Contact:
Jia Xiuhong,Email:Supported by:
摘要:
铜死亡是一种新发现的铜依赖性的细胞死亡方式,通过影响线粒体三羧酸循环和铁硫簇蛋白的丢失,导致蛋白质毒性应激,引发细胞死亡。近年来,随着对铜死亡机制的深入研究发现,铜死亡相关基因可能与肿瘤临床特征、预后有关,可作为诊断或治疗肿瘤的潜在生物靶点。同时,靶向铜离子的药物如铜离子载体、铜螯合剂和含铜络合物被广泛研究。深入研究铜死亡在肿瘤发生发展中的作用机制,可为肿瘤诊断及治疗提供新的思路。
李志远, 贾秀红. 铜死亡在肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 163-168.
Li Zhiyuan, Jia Xiuhong. Research progress of copper death in tumor[J]. Journal of International Oncology, 2025, 52(3): 163-168.
[1] |
Porporato PE, Filigheddu N, Pedro JMB, et al. Mitochondrial metabolism and cancer[J]. Cell Res, 2018, 28(3): 265-280. DOI: 10.1038/cr.2017.155.
pmid: 29219147 |
[2] |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. DOI: 10.1126/science.abf0529.
pmid: 35298263 |
[3] | Ge EJ, Bush AI, Casini A, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia[J]. Nat Rev Cancer, 2022, 22(2): 102-113. DOI: 10.1038/s41568-021-00417-2. |
[4] | Cobine PA, Moore SA, Leary SC. Getting out what you put in: copper in mitochondria and its impacts on human disease[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(1): 118867. DOI: 10.1016/j.bbamcr.2020.118867. |
[5] |
Tsvetkov P, Detappe A, Cai K, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress[J]. Nat Chem Biol, 2019, 15(7): 681-689. DOI: 10.1038/s41589-019-0291-9.
pmid: 31133756 |
[6] | Liu H, Guo H, Jian Z, et al. Copper induces oxidative stress and apoptosis in the mouse liver[J]. Oxid Med Cell Longev, 2020, 2020: 1359164. DOI: 10.1155/2020/1359164. |
[7] |
Leal AS, Wang R, Salvador JA, et al. Semisynthetic ursolic acid fluorolactone derivatives inhibit growth with induction of p21(waf1) and induce apoptosis with upregulation of NOXA and downregulation of c-FLIP in cancer cells[J]. ChemMedChem, 2012, 7(9): 1635-1646. DOI: 10.1002/cmdc.201200282.
pmid: 22807348 |
[8] |
Lan Y, Bai P, Liu Y, et al. Visualization of receptor-interacting protein kinase 1 (RIPK1) by brain imaging with positron emission tomography[J]. J Med Chem, 2021, 64(20): 15420-15428. DOI: 10.1021/acs.jmedchem.1c01477.
pmid: 34652135 |
[9] | Liao J, Hu Z, Li Q, et al. Endoplasmic reticulum stress contributes to copper-induced pyroptosis via regulating the IRE1α-XBP1 pathway in pig jejunal epithelial cells[J]. J Agric Food Chem, 2022, 70(4): 1293-1303. DOI: 10.1021/acs.jafc.1c07927. |
[10] |
Yang M, Wu X, Hu J, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma[J]. J Hepatol, 2022, 76(5): 1138-1150. DOI: 10.1016/j.jhep.2022.01.009.
pmid: 35101526 |
[11] | Wang X, Zhuang Y, Fang Y, et al. Endoplasmic reticulum stress aggravates copper-induced apoptosis via the PERK/ATF4/CHOP signaling pathway in duck renal tubular epithelial cells[J]. Environ Pollut, 2021, 272: 115981. DOI: 10.1016/j.envpol.2020.115981. |
[12] | Wu H, Guo H, Liu H, et al. Copper sulfate-induced endoplasmic reticulum stress promotes hepatic apoptosis by activating CHOP, JNK and caspase-12 signaling pathways[J]. Ecotoxicol Environ Saf, 2020, 191: 110236. DOI: 10.1016/j.ecoenv.2020.110236. |
[13] |
Chen X, Zhang X, Chen J, et al. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells[J]. Eur J Pharmacol, 2017, 815: 147-155. DOI: 10.1016/j.ejphar.2017.09.003.
pmid: 28887042 |
[14] | Pilankar A, Singhavi H, Raghuram GV, et al. A pro-oxidant combination of resveratrol and copper down-regulates hallmarks of cancer and immune checkpoints in patients with advanced oral cancer: results of an exploratory study (RESCU 004)[J]. Front Oncol, 2022, 12: 1000957. DOI: 10.3389/fonc.2022.1000957. |
[15] | Yang W, Wang Y, Huang Y, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer[J]. Biomed Pharmacother, 2023, 159: 114301. DOI: 10.1016/j.biopha.2023.114301. |
[16] | Geng R, Ke N, Wang Z, et al. Copper deprivation enhances the chemosensitivity of pancreatic cancer to rapamycin by mTORC1/2 inhibition[J]. Chem Biol Interact, 2023, 382: 110546. DOI: 10.1016/j.cbi.2023.110546. |
[17] | Zhang Z, Ma Y, Guo X, et al. FDX1 can impact the prognosis and mediate the metabolism of lung adenocarcinoma[J]. Front Pharmacol, 2021, 12: 749134. DOI: 10.3389/fphar.2021.749134. |
[18] | Chen G, Zhang J, Teng W, et al. FDX1 inhibits thyroid cancer malignant progression by inducing cuprotosis[J]. Heliyon, 2023, 9(8): e18655. DOI: 10.1016/j.heliyon.2023.e18655. |
[19] | Zhang C, Zeng Y, Guo X, et al. Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker[J]. Front Genet, 2022, 13: 923737. DOI: 10.3389/fgene.2022.923737. |
[20] | Sun L, Zhang Y, Yang B, et al. Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer[J]. Nat Commun, 2023, 14(1): 6523. DOI: 10.1038/s41467-023-42025-8. |
[21] |
Zhao F, Hao Z, Zhong Y, et al. Discovery of breast cancer risk genes and establishment of a prediction model based on estrogen metabolism regulation[J]. BMC Cancer, 2021, 21(1): 194. DOI: 10.1186/s12885-021-07896-4.
pmid: 33632172 |
[22] |
Ke H, Suzuki A, Miyamoto T, et al. 4-Hydroxy estrogen induces DNA damage on codon 130/131 of PTEN in endometrial carcinoma cells[J]. Mol Cell Endocrinol, 2015, 400: 71-77. DOI: 10.1016/j.mce.2014.10.027.
pmid: 25449419 |
[23] | Zhao J, Guo S, Schrodi SJ, et al. Cuproptosis and cuproptosis-related genes in rheumatoid arthritis: implication, prospects, and perspectives[J]. Front Immunol, 2022, 13: 930278. DOI: 10.3389/fimmu.2022.930278. |
[24] | Cai Y, He Q, Liu W, et al. Comprehensive analysis of the potential cuproptosis-related biomarker LIAS that regulates prognosis and immunotherapy of pan-cancers[J]. Front Oncol, 2022, 12: 952129. DOI: 10.3389/fonc.2022.952129. |
[25] |
Raggi C, Taddei ML, Sacco E, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma[J]. J Hepatol, 2021, 74(6): 1373-1385. DOI: 10.1016/j.jhep.2020.12.031.
pmid: 33484774 |
[26] |
Zhao Y, Xu G, Li H, et al. Overexpression of endogenous lipoic acid synthase attenuates pulmonary fibrosis induced by crystalline silica in mice[J]. Toxicol Lett, 2020, 323: 57-66. DOI: 10.1016/j.toxlet.2020.01.023.
pmid: 32017981 |
[27] | Chen Y. Identification and validation of cuproptosis-related prognostic signature and associated regulatory axis in uterine corpus endometrial carcinoma[J]. Front Genet, 2022, 13: 912037. DOI: 10.3389/fgene.2022.912037. |
[28] |
Yan C, Niu Y, Ma L, et al. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma[J]. J Transl Med, 2022, 20(1): 452. DOI: 10.1186/s12967-022-03630-1.
pmid: 36195876 |
[29] | Peng Y, Shi R, Yang S, et al. Cuproptosis-related gene DLAT is a biomarker of the prognosis and immune microenvironment of gastric cancer and affects the invasion and migration of cells[J]. Cancer Med, 2024, 13(14): e70012. DOI: 10.1002/cam4.70012. |
[30] |
Chen Q, Wang Y, Yang L, et al. PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming[J]. J Exp Clin Cancer Res, 2022, 41(1): 229. DOI: 10.1186/s13046-022-02437-8.
pmid: 35869499 |
[31] | Zhang C, Xu T, Ji K, et al. An integrative analysis reveals the prognostic value and potential functions of PSMD11 in hepatocellular carcinoma[J]. Mol Carcinog, 2023, 62(9): 1355-1368. DOI: 10.1002/mc.23568. |
[32] | Ye Z, Zhang S, Cai J, et al. Development and validation of cuproptosis-associated prognostic signatures in WHO 2/3 glioma[J]. Front Oncol, 2022, 12: 967159. DOI: 10.3389/fonc.2022.967159. |
[33] |
Liu H. Pan-cancer profiles of the cuproptosis gene set[J]. Am J Cancer Res, 2022, 12(8): 4074-4081.
pmid: 36119826 |
[34] | Zhao L, Geng R, Huang Y, et al. AP2α negatively regulates PDHA1 in cervical cancer cells to promote aggressive features and aerobic glycolysis in vitro and in vivo[J]. J Gynecol Oncol, 2023, 34(5): e59. DOI: 10.3802/jgo.2023.34.e59. |
[35] | Deng L, Jiang A, Zeng H, et al. Comprehensive analyses of PDHA1 that serves as a predictive biomarker for immunotherapy response in cancer[J]. Front Pharmacol, 2022, 13: 947372. DOI: 10.3389/fphar.2022.947372. |
[36] | Giannos P, Kechagias KS, Gal A. Identification of prognostic gene biomarkers in non-small cell lung cancer progression by integrated bioinformatics analysis[J]. Biology (Basel), 2021, 10(11): 1200. DOI: 10.3390/biology10111200. |
[37] | Wu J, Wang S, Liu Y, et al. Integrated single-cell and bulk characterization of cuproptosis key regulator PDHB and association with tumor microenvironment infiltration in clear cell renal cell carcinoma[J]. Front Immunol, 2023, 14: 1132661. DOI: 10.3389/fimmu.2023.1132661. |
[38] | Yang C, Lee D, Zhang MS, et al. Genome-wide CRISPR/Cas9 library screening revealed dietary restriction of glutamine in combination with inhibition of pyruvate metabolism as effective liver cancer treatment[J]. Adv Sci (Weinh), 2022, 9(34): e2202104. DOI: 10.1002/advs.202202104. |
[39] | McCann C, Quinteros M, Adelugba I, et al. The mitochondrial Cu+ transporter PiC2 (slc25a3) is a target of MTF1 and contributes to the development of skeletal muscle in vitro[J]. Front Mol Biosci, 2022, 9: 1037941. DOI: 10.3389/fmolb.2022.1037941. |
[40] | Zhao S, Chen S, Liu W, et al. Integrated machine learning and bioinformatic analyses used to construct a copper-induced cell death-related classifier for prognosis and immunotherapeutic response of hepatocellular carcinoma patients[J]. Front Pharmacol, 2023, 14: 1188725. DOI: 10.3389/fphar.2023.1188725. |
[41] | Fan K, Dong Y, Li T, et al. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma[J]. Front Genet, 2023, 13: 1036408. DOI: 10.3389/fgene.2022.1036408. |
[42] | Zeng M, Wu B, Wei W, et al. Disulfiram: a novel repurposed drug for cancer therapy[J]. Chin Med J (Engl), 2024, 137(12): 1389-1398. DOI: 10.1097/cm9.0000000000002909. |
[43] | Kang X, Jadhav S, Annaji M, et al. Advancing cancer therapy with copper/disulfiram nanomedicines and drug delivery systems[J]. Pharmaceutics, 2023, 15(6): 1567. DOI: 10.3390/pharmaceutics15061567. |
[44] |
Yang Y, Deng Q, Feng X, et al. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice[J]. Mol Med Rep, 2015, 12(1): 746-752. DOI: 10.3892/mmr.2015.3426.
pmid: 25738885 |
[45] |
Skrott Z, Majera D, Gursky J, et al. Disulfiram's anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase[J]. Oncogene, 2019, 38(40): 6711-6722. DOI: 10.1038/s41388-019-0915-2.
pmid: 31391554 |
[46] | Kang X, Wang J, Huang CH, et al. Diethyldithiocarbamate copper nanoparticle overcomes resistance in cancer therapy without inhibiting P-glycoprotein[J]. Nanomedicine, 2023, 47: 102620. DOI: 10.1016/j.nano.2022.102620. |
[47] |
Zheng P, Zhou C, Lu L, et al. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy[J]. J Exp Clin Cancer Res, 2022, 41(1): 271. DOI: 10.1186/s13046-022-02485-0.
pmid: 36089608 |
[48] | Bristot IJ, Kehl Dias C, Chapola H, et al. Metabolic rewiring in melanoma drug-resistant cells[J]. Crit Rev Oncol Hematol, 2020, 153: 102995. DOI: 10.1016/j.critrevonc.2020.102995. |
[49] | Liu H, Zhang Y, Zheng S, et al. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells[J]. Biochem Biophys Res Commun, 2016, 477(4): 1031-1037. DOI: 10.1016/j.bbrc.2016.07.026. |
[50] |
Ramchandani D, Berisa M, Tavarez DA, et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis[J]. Nat Commun, 2021, 12(1): 7311. DOI: 10.1038/s41467-021-27559-z.
pmid: 34911956 |
[51] | Kim YJ, Tsang T, Anderson GR, et al. Inhibition of BCL2 family members increases the efficacy of copper chelation in BRAFV600E-driven melanoma[J]. Cancer Res, 2020, 80(7): 1387-1400. DOI: 10.1158/0008-5472.Can-19-1784. |
[52] | Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19(8): 2175-2195. DOI: 10.1080/15548627.2023.2200554. |
[53] |
Voli F, Valli E, Lerra L, et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion[J]. Cancer Res, 2020, 80(19): 4129-4144. DOI: 10.1158/0008-5472.CAN-20-0471.
pmid: 32816860 |
[54] | Yang Y, Liang S, Geng H, et al. Proteomics revealed the crosstalk between copper stress and cuproptosis, and explored the feasibility of curcumin as anticancer copper ionophore[J]. Free Radic Biol Med, 2022, 193(Pt 2): 638-647. DOI: 10.1016/j.freeradbiomed.2022.11.023. |
[55] |
Kordestani N, Rudbari HA, Fernandes AR, et al. Antiproliferative activities of diimine-based mixed ligand copper(Ⅱ) complexes[J]. ACS Comb Sci, 2020, 22(2): 89-99. DOI: 10.1021/acscombsci.9b00202.
pmid: 31913012 |
[56] | Luo B, Chen L, Hong Z, et al. A simple and feasible atom-precise biotinylated Cu(Ⅰ) complex for tumor-targeted chemodynamic therapy[J]. Chem Commun (Camb), 2021, 57(49): 6046-6049. DOI: 10.1039/d1cc00515d. |
[57] |
Wang J, Xu M, Wang D, et al. Copper-doped carbon dots for optical bioimaging and photodynamic therapy[J]. Inorg Chem, 2019, 58(19): 13394-13402. DOI: 10.1021/acs.inorgchem.9b02283.
pmid: 31556604 |
[1] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛. 结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
[2] | 韩涛, 贾沛沛, 鲁静. iRhom1、iRhom2、TNF-α水平对宫颈癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2025, 52(3): 158-162. |
[3] | 欧阳苏瑞, 孙梦颖, 唐桩, 李进, 何敬东. 瘤内免疫注射药物及药物递送载体的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 169-175. |
[4] | 张百红, 岳红云. 抗肿瘤药物递送系统研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 176-179. |
[5] | 王智颖, 盛立军. 外周血标志物在非小细胞肺癌免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 180-185. |
[6] | 王菲菲, 赵守香, 李颖, 王涛, 郭琴, 田胜南, 蔡晓珊. 气球状细胞黑色素瘤肝转移1例[J]. 国际肿瘤学杂志, 2025, 52(3): 190-192. |
[7] | 邢辉, 谭莹, 王秀珍, 李瑞, 刘霞. NLR、TNF-α水平对巨块型肝癌患者TACE联合微波消融治疗效果的预测分析[J]. 国际肿瘤学杂志, 2025, 52(2): 101-106. |
[8] | 王熙博, 田宝文, 陈士巧. Breg细胞在肿瘤免疫逃逸中的机制及相关治疗靶点[J]. 国际肿瘤学杂志, 2025, 52(2): 107-112. |
[9] | 叶永英, 邹艳, 陈天明, 吴伟莉. 时钟基因Period家族在头颈鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(2): 113-118. |
[10] | 陈丹蕾, 邓隽军, 李淼. 循环肿瘤细胞在肺癌中的临床应用进展[J]. 国际肿瘤学杂志, 2025, 52(2): 119-123. |
[11] | . 胃癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(2): 65-66. |
[12] | 王智宝, 李广现, 张昕昕, 崔伟, 张微. MRI联合血清lncRNA KCNQ1OT1、miR-204-5p对乳腺癌腋窝淋巴结转移的预测价值[J]. 国际肿瘤学杂志, 2025, 52(2): 89-93. |
[13] | 姬海涛, 王延峰, 刘永成, 郝楠. 基于生物信息学分析DHCR7在胃癌中的表达及临床意义[J]. 国际肿瘤学杂志, 2025, 52(2): 94-100. |
[14] | . 食管癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(1): 1-2. |
[15] | 谭荣坚, 欧雯婷, 翟嘉伟, 全祯豪, 孙利君, 周才进. RRM2通过调控CDK1对胃癌细胞恶性生物学行为及有氧糖酵解的影响[J]. 国际肿瘤学杂志, 2025, 52(1): 23-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||